

Charge Breeder OVERVIEW

Laurent Maunoury, Pierre Delahaye, Julien Angot, Patrick Sole, Olivier Bajeat, Romain Frigot, Antony Jeanne, Pascal jardin, Omar Kamalou, Patrice Lecomte, Benoit Osmond, Guillaume Peschard, Thierry Lamy et Alain Savalle

GANIL, Blvd H. Becquerel, 14076 Caen Cedex 5
(*) dubois@ganil.fr

OUTLINE

- 1 Why a charge breeder?
- 2 Charge breeder modifications
- 2 Tests at LPSC Grenoble

Ar gas

Kr gas

Alkali elements

Pressure influence

1+ beam intensity influence

Transmission through the charge breeder

Sum up of our results

Charge breeder WHY?

Based on Phoenix booster

- ✓ Two RF ports 14.5 GHz and 8-18 GHz
- ✓ New design of gas and RF injection
- ✓ Symetrisation of the iron plug
- ✓ Movable deceleration tube
- ✓ Plasma chamber made of Al
- ✓ Nickel coating of the iron plug

Improvement of our charge breeder according to the feedback of EMILIE collaboration

The research leading to these results has received funding from the European Union's Seventh Framework Programme under grant agreement n°262010

More modifications...

More pumping speed => 3000 I/S

Mobile puller & electrostatic lens

HF: 14,5GHz + 8/18GHz Mobile Ground tube

Electrostatic QPole Focussing/steering

6

Vacuum pressure tests - GANIL

Mechanical assembly at GANIL

UHV Baking

Extraction side

Injection side

Tests at the LPSC 1+/N+ test bench

Typical spectrum

Typical spectrum

Ar gas

Comparison of direct ionization with 1+/n+ method

 $\Sigma (Ar^{n+})_{1+/n+} \sim 66\%$

 $\Sigma (Ar^{n+})_{calibrated leak} \sim 42\%$

Flux of the calibrated leak \sim 15 μ Ap

 $\Sigma (Ar^{n+})_{1+/n+} \sim 67\%$

 $\Sigma(Ar^{n+})_{calibrated leak} \sim 55\%$

Flux of the calibrated leak \sim 15 μ Ap

Kr gas

Charge state distributions for Na, K and Rb

Similar △V spectra with FWHM of ~7.5V

Higher charge breeding efficiency with lighter buffer gas for ³⁹K⁹⁺

Charge breeding time increases with charge state

Charge breeding efficiency has a slight evolution with the position of the deceleration tube

Pressure influence

1+ beam intensity influence

Charge breeding efficiency is a plateau over a decade

L. Maunoury, RSI, **85** 02A504 (2014)

Haute Tension (kV)	Etat HT	Na ¹⁺	K ¹⁺	Rb ¹⁺	ΔV
10	OFF			55	-
20	OFF			65	•
20	ON			30	-5
20	ON		37		-10
20	ON	48			-15

		Ţ	SPIRAL1		SPES		CARIBU		LPSC		ISOLDE	
1				Charge		Charge		Charge		Charge		Charge
1	lon	A/Q	Efficiency				Efficiency				Efficiency	
1			(%)	Time (ms / q)	(%)	Time (ms / q)	(%)	Time (ms / q)	(%)	Time (ms / q)	(%)	Time (ms / q)
	²³ Na ⁶⁺	3.83		(((3.7	6.0		(
	²³ Na ⁷⁺	3.29	6.0	7.4			10.1		3.8	7.4		
	²³ Na ⁸⁺	2.88	5.3				8.6		3.2	8.8		
6	³⁹ K ⁹⁺	4.33	13.0	13	+ H ₂		15.6	16.7	8	5.4		
	³⁹ K ⁹⁺	4.33	11.7	3.9	+ He							
T	$^{39}K^{10+}$	3.90	8.0				17.9	15.7	5.2	6.0	1.7	10
	⁴⁰ Ar ⁸⁺	5.00	18.9	10.9	15.2	9.1			16.2	9.8	13.5	
l	⁴⁰ Ar ¹¹⁺		12.9	9.8					8.4			
l	84Kr ¹⁵⁺	5.60					10.7		10.0		4.0	
	⁸⁴ Kr ¹⁷⁺	4.94					15.6		12.0	8.5		
1	85Rb17+	5.67					11.5	10.6	7.5	13.3		
	⁸⁵ Rb ¹⁹⁺		8.4	15.8	7.8	28.2	13.7	77.9	7.3	12.0		
	⁸⁵ Rb ¹⁹⁺						12.9	12.1				
	$^{86}Kr^{15+}$	5.73	8.3	3.4								

Coming back to GANIL

April 2015

January **2016**

Ready for the CB return

And now...

✓ Charge breeder is back home

March 2016

- ✓ Assembly in the Low Energy Beam Line of SPIRAL1

 May July 2016
- ✓ Vacuum pressure validation

 July 2016
- ✓ Commissioning with stable 1+ beams

November 2016 – 1st trimester 2017

✓ Commissioning with radioactive 1+ beams

2nd trimester 2017